SIRT3 substrate specificity determined by peptide arrays and machine learning.
نویسندگان
چکیده
Accumulating evidence suggests that reversible protein acetylation may be a major regulatory mechanism that rivals phosphorylation. With the recent cataloging of thousands of acetylation sites on hundreds of proteins comes the challenge of identifying the acetyltransferases and deacetylases that regulate acetylation levels. Sirtuins are a conserved family of NAD(+)-dependent protein deacetylases that are implicated in genome maintenance, metabolism, cell survival, and lifespan. SIRT3 is the dominant protein deacetylase in mitochondria, and emerging evidence suggests that SIRT3 may control major pathways by deacetylation of central metabolic enzymes. Here, to identify potential SIRT3 substrates, we have developed an unbiased screening strategy that involves a novel acetyl-lysine analogue (thiotrifluoroacetyl-lysine), SPOT-peptide libraries, machine learning, and kinetic validation. SPOT peptide libraries based on known and potential mitochondrial acetyl-lysine sites were screened for SIRT3 binding and then analyzed using machine learning to establish binding trends. These trends were then applied to the mitochondrial proteome as a whole to predict binding affinity of all lysine sites within human mitochondria. Machine learning prediction of SIRT3 binding correlated with steady-state kinetic k(cat)/K(m) values for 24 acetyl-lysine peptides that possessed a broad range of predicted binding. Thus, SPOT peptide-binding screens and machine learning prediction provides an accurate and efficient method to evaluate sirtuin substrate specificity from a relatively small learning set. These analyses suggest potential SIRT3 substrates involved in several metabolic pathways such as the urea cycle, ATP synthesis, and fatty acid oxidation.
منابع مشابه
Crystal structures of human SIRT3 displaying substrate-induced conformational changes.
SIRT3 is a major mitochondrial NAD(+)-dependent protein deacetylase playing important roles in regulating mitochondrial metabolism and energy production and has been linked to the beneficial effects of exercise and caloric restriction. SIRT3 is emerging as a potential therapeutic target to treat metabolic and neurological diseases. We report the first sets of crystal structures of human SIRT3, ...
متن کاملSpecificity analysis of protein lysine methyltransferases using SPOT peptide arrays.
Lysine methylation is an emerging post-translation modification and it has been identified on several histone and non-histone proteins, where it plays crucial roles in cell development and many diseases. Approximately 5,000 lysine methylation sites were identified on different proteins, which are set by few dozens of protein lysine methyltransferases. This suggests that each PKMT methylates mul...
متن کاملEnzyme Redesign by SVM
In [1], a new support vector machine (SVM)-based approach was proposed to predict the substrate (adenylation domain, or A domain in short) specificity of subtypes of a given protein sequence family (nonribosomal peptide synthetases, or NRPS in short). Based on the physico-chemical properties of the amino acids, the residues of NRPS were first encoded into vectors in high dimensional feature spa...
متن کاملA Molecular Mechanism for Direct Sirtuin Activation by Resveratrol
Sirtuins are protein deacetylases regulating metabolism, stress responses, and aging processes, and they were suggested to mediate the lifespan extending effect of a low calorie diet. Sirtuin activation by the polyphenol resveratrol can mimic such lifespan extending effects and alleviate metabolic diseases. The mechanism of Sirtuin stimulation is unknown, hindering the development of improved a...
متن کاملAn improved fluorogenic assay for SIRT1, SIRT2, and SIRT3.
Sirtuins are NAD-dependent lysine deacylases that play critical roles in cellular regulation and are implicated in human diseases. Modulators of sirtuins are needed as tools for investigating their biological functions and possible therapeutic applications. However, the discovery of sirtuin modulators is hampered by the lack of efficient sirtuin assays. Here we report an improved fluorogenic as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS chemical biology
دوره 6 2 شماره
صفحات -
تاریخ انتشار 2011